Süperkritikal Doku İşleme Klinik Yayınları,

1. Fages J., Marty A., Delga C., Condoret J.S., Combes D. & Frayssinet P. (1994). Use of supercritical CO2 for bone delipidation. Biomaterials, 15 (9), 650-656.

2. Russel N.A., Rives A., Pelletier M.H., Bruce W.J. & Walsh W.R. (2013). The efffect of sterilization methods on the osteoconductivity of allograft bone in a critical sized bilateral tibial defect model in rabbits. Biomaterials, 34 (33), 8185-94.

3. Nguyen, H. et al. (2013). Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone, 57 (1), 194-200.

4. Almeida O.M. et al. (2013). Comparative study and histomorphometric analysis of bone allografts lyophilized and sterilized by autoclaving, gamma irradiation and ethylene oxide in rats. Acta Cirurgica Brasileira, 28 (1), 66-71.

5. Nicols A., Burns D.C. & Christopher R. (2009). Studies on the Sterilization of Human Bone and Tendon Musculoskeletal Allograft Tissue using Supercritical Carbon Dioxide. Journal of Orthopaedics, 6 (2), 12-12.

6. Archibald L.K. et al. (2005). Investigation of Postoperative Allograft-Associated Infections in Patients Who Underwent Musculoskeletal Allograft Implantation. Clinical Infectious Diseases, 21 (2), 195-200.

7. Dillow, A.K. et al. (1999). Bacterial inactivation by using near- and supercritical carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 96 (18), 10344-10348.

8. Fages, J. et al. (1998) Viral Inactivation of Human Bone Tissue Using Supercritical Fluid Extraction. ASAIO Journal, 44 (4), 289-293.

9. Enomoto, A. et al. (1997) Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Bioscience, Biotechnology and Biochemistry, 61 (7), 1133–1137.

10. Sawada, K., Terada, D., Yamaoka, T., Kitamura, S., & Fujisato, T. (2008). Cell removal with supercritical carbon dioxide for acellular artificial tissue. Journal of Chemical Technology & Biotechnology, 83 (6), 943–949.

11. Brett, D. (2008). A review of collagen and collagen-based wound dressings. Wounds: a compendium of clinical research and practice, 20 (12), 347–56.

12. Mitton D, Rappeneau J, Bardonnet R. Effect of a supercritical CO2 based treatment on mechanical properties of human cancellous bone. Eur J Orthop Surg Traumatol 2005;15:264–269.

13. Kalus U, Muller H, Baudisch H, Birkhahn HJ, Von Versen R, Hansen A, Pruss A. A method for the determination of the residual chloroform in defatted bone transplants. Cell Tissue Bank 2005;6:71–75.

14. Mroz TE, Lin EL, Summit MC, Bianchi JR, Keesling JE, Roberts M, Vangness CT, Wang JC. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process. Spine 2006;6:34–39.

15. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 2000;18: 426–431.

16. Loty B, Courpied JP, Tomeno B, Postel M, Forest M, Abelanet R. Radiation sterilized bone allografts. Int Orthop 1990; 14:237–242.

17. Smith RA, Ingels J, Locheness JJ, Dutkowsky JP, Pifer LL. Gamma irradiation of HIV-1.J Orthop Res 2001;19:815–819.

18. Grieb TA, Forng RY, Stafford RE, Lin J, Almeida J, Bogdansky S, Ronholdt C, Drohan WN, Burgess WH. Effective use of optimized, high dose (50 KGy) gamma irradiation for pathogen inactivation of human bone allograft. Biomaterials 2005;26:2033–2042.

19. Anderson MJ, Keyak JH, Skinner HB. Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am 1992;74A:747–752.

20. Thoren K, Aspenberg P, Thomgren KG. Lipid extracted bone bank. Bone conductive and mechanical properties. Clin Orthop 1995;311:232–246.

21. Vastel L, Meunier A, Siney H, Sedel L, Courpied JP. Effect of different sterilization methods on the mechanical properties of human cancellous bone allografts. Biomaterials 2004;25: 2105–2110.

22. Abendstein W, Hyatt GW. Ultrasonics and selected properties of bone. Clin Orthop 1970;69:294–301.

23. Ashman RB, Corin JD, Turner CH. Elastic properties of cancellous bone: Measurement by an ultrasonic technique. J Biomech 1987;20:979–986.

24. Njeh CF, Kuo CW, Langton CM, Atrah HL, Boivin CM. Prediction of human femoral bone strength using ultrasound velocity and BMD: An in vitro study. Osteoporos Int 1997;7: 471–477.

25. Hodgkinson R, Njeh CF, Currey JD, Langton CM. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 1997;21:183–190.

26. Han S, Medige J, Davis J, Fishkin Z, Mihalko W, Ziv I. Ultrasound velocity and broadband as predictors of load-bearing capacities of human calcanei. Calcif Tissue Int 1997;60:21–25

27. Carter D, Hayes WC. Bone compressive strength: The influence of density and strain rate. Science 1976;194:1174–1175.

28. Brown TD, Shaw DT. In vitro contact stress distributions in the natural human hip. J Biomech 1983;16:373–384.

29. Crowninshield RD, Brand RA, Pedersen DR. A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg Am 1983;65A:495–499.

30. Hironibu O, Hideo I, Tatsuhiko H. Mechanical analysis of the human pelvis and its application to the artificial hip joint: By means of the three dimensional finite element method. J Biomech 1983;16:427–444.

31. Gluer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res 1992;14:1952–1962.

32. Fages J, Poirier B, Barbier Y, Frayssinnet P. Use of supercritical CO2 for bone delipidation. Biomaterials 1994;15:650– 656.

33. Weaver JK, Chalmers J. Cancellous bone: Its strength and changes with aging and an evaluation of some methods for measuring its mineral contents. J Bone Joint Surg Am 1966; 48A:289–299.

34. Smith CB, Smith DA. Relation between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 1976;47:496–502.

35. Brown TD, Ferguson AB. Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 1980;31:429–437.

36. Deligianni DD, Maris A, Missirlis YF. Stress relaxation behaviour of trabecular bone specimens. J Biomech 1994;27: 1469–1476.

37. Lehninger A, Nelson D, Cox M. Three dimensional structure of proteins. In: Principles of Biochemistry, Part I, Ch. 4. New York: W.H. Freeman and Co.; 2004.

38. Moreau MF, Gallois Y, Basle´ MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and release toxic compounds for osteoblast-like cells. Biomaterials 2000;21:369–376.

Effects of gamma irradiation on mechanical properties of defatted trabecular bone allografts assessed by speed-of-sound measurement

Effects on Osteointegration and Viral Safety

1. Abendstein W, Hyatt GW (1970) Ultrasonics and selected properties of bone. Clin Orthop Rel Res 69:294–301

2. Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20:979–986

3. Anderson MJ, Keyak JH, Skinner HB (1992) Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am 74(5):747–752

4. Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 31:429–437

5. Carter D, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1175

6. Chappard D, Fressonnet C, Genty C, Basle´ MF, Rebel A (1993) Fat in bone xenografts: importance of the purification procedures on cleanliness, wettability and biocompatibility. Biomaterials 14:507–512

7. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C (2000) Effect of freeze drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18:426–431

8. Crowninshield RD, Brand RA, Pedersen DR (1983) A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg Am 65A:495–499

9. Deligianni DD, Maris A, Missirlis YF (1994) Stress relaxation behaviour of trabecular bone specimens. J Biomech 27:1469–1476

10. Grieb TA, Forng RY, Stafford RE, Lin J, Almeida J, Bogdansky S, Ronholdt C, Drohan WN, Burgess WH (2005) Effective use of optimized, high dose (50 KGy) gamma irradiation for pathogen inactivation of human bone allograft. Biomaterials 26:2033–2042

11. Kalus U, Muller H, Baudisch H, Birkhahn HJ, Von Versen R, Hansen A, Pruss A (2005) A Method for the determination of the residual chloroform in defatted bone transplants. Cell Tissue Bank 6:71–75

12. Hodgkinson R, Njeh CF, Currey JD, Langton CM (1997) The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 21:183–190

13. Loty B, Courpied JP, Tomeno B, Postel M, Forest M, Abelanet R (1990) Radiation sterilized bone allografts. Int Orthop 14:237–242

14. Mitton D, Rappeneau J, Bardonnet R (2005) Effect of a supercritical CO2 based treatment on mechanical properties of human cancellous bone. Eur J Orthop Surg Traumatol 15:264–269

15. Mroz TE, Lin EL, Summit MC, Bianchi JR, Keesling JE, Roberts M, Vangness CT, Wang JC (2006) Biomechanical analysis of allograft bone treated with a novel tissue sterilization process. Spine 6:34–39

16. Njeh CF, Kuo CW, Langton CM, Atrah HL, Boivin CM (1997) Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study. Osteoporos Int 7:471–77

17. Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint—By means of the three dimensional finite element method. J Biomech 16:427–444

18. Poumarat G, Squire P (1993) Comparison of mechanical properties of human, bovine bone and a new processed xenograft. Biomaterials 14:337–340

19. Smith CB, Smith DA (1976) Relation between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47:496–402 Smith RA, Ingels J, Locheness JJ, Dutkowsky JP, Pifer LL (2001) Gamma irradiation of HIV-1.J Orthop Res 19:815–819

20. Vastel L, Meunier A, Siney H, Sedel L, Courpied JP (2004) Effect of different sterilization methods on the mechanical properties of human cancellous bone allografts. Biomaterials 25:2105–2110

21. Weaver JK, Chalmers J (1966) Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral contents. J Bone Joint Surg Am 48A:289–299